International Science and Technology Journal

Published by

Under supervision of


Open Access Journal

ISSN: 2519-9854 (Online)

ISSN: 2519-9846 (Print)

DOI: www.doi.org/10.62341/ISTJ

A peer-reviewed and open access journal concerned with publishing researches and studies in the field of applied sciences and engineering

Published by

Under supervision of

SOME RESULTS ON THE POINT NUMERICAL RANGE OF AN . N. TUPLE OF OPERATORS ON ASEMI-INNER PRODUCT SPACE

الملخص
من الحقائق المعروفة في هذا الموضوع هي المبرهنة المتعلقة بالقيم الذاتية (Eigen Values) للمؤثر T (حيث T B(H)، Hهو فضاء هلبرت)، والتي تنص على أن: مجموعة القيم الذاتية  للمؤثر T هي مجموعة جزئية من المدى العددي W(T) للمؤثر T، وأن العكس يكون صحيحاً بشرط أن : || = ||T|| .
Abstract
P.R. Halmos [3] has proved that. For any bounded operator T and a Hilbert space H, every eigen value  of T is in the numerical range W(T), and the converse is true if ||=ווT וו. In this paper we generalize the above result to the case of n-tuples of the operators on any normed linear space. (semi-inner product space) with some necessary condition for the converse. Further, we improve a theorem of lumer [5] which asserts that : the approximate point spectrum (T) of T B(X), where X is any normed space is contained in (W(T)) ̅ where dash is denotes closure.